【Markdown】KaTex语法(博客现用版)

KaTeX

行内的公式 Inline

$E=mc^2$

Inline 行内的公式 $E=mc^2$ 行内的公式,行内的$E=mc^2$公式。

$c = \pm\sqrt{a^2 + b^2}$

$x > y$

$f(x) = x^2$

$\alpha = \sqrt{1-e^2}$

$(\sqrt{3x-1}+(1+x)^2)$

$\sin(\alpha)^{\theta}=\sum_{i=0}^{n}(x^i + \cos(f))$

$\dfrac{-b \pm\sqrt{b^2 – 4ac}}{2a}$

$f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$

$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$

$\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$

$a^2$

$a^{2+2}$

$a_2$

${x_2}^3$

$x_2^3$

$10^{10^{8}}$

$a_{i,j}$

$_nP_k$

$c = \pm\sqrt{a^2 + b^2}$

$\frac{1}{2}=0.5$

$\dfrac{k}{k-1} = 0.5$

$\dbinom{n}{k} \binom{n}{k}$

$\oint_C x^3\, dx + 4y^2\, dy$

$\bigcap_1^n p \bigcup_1^k p$

$e^{i \pi} + 1 = 0$

$\left ( \frac{1}{2} \right )$

$x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}$

${\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}$

$\textstyle \sum_{k=1}^N k^2$

$\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n$

$\binom{n}{k}$

$0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots$

$\sum_{k=1}^N k^2$

$\textstyle \sum_{k=1}^N k^2$

$\prod_{i=1}^N x_i$

$\textstyle \prod_{i=1}^N x_i$

$\coprod_{i=1}^N x_i$

$\textstyle \coprod_{i=1}^N x_i$

$\int_{1}^{3}\frac{e^3/x}{x^2}\, dx$

$\int_C x^3\, dx + 4y^2\, dy$

${}_1^2!\Omega_3^4$

多行公式 Multi line

```math or ```latex or ```katex

f(x) = \int_{-\infty}^\infty
\hat f(\xi)\,e^{2 \pi i \xi x}
\,d\xi
\displaystyle
\left( \sum\_{k=1}^n a\_k b\_k \right)^2
\leq
\left( \sum\_{k=1}^n a\_k^2 \right)
\left( \sum\_{k=1}^n b\_k^2 \right)
\dfrac{
\tfrac{1}{2}[1-(\tfrac{1}{2})^n] }
{ 1-\tfrac{1}{2} } = s_n
\displaystyle
\frac{1}{
\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{
\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {
1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}}
{1+\cdots} }
}
}
f(x) = \int_{-\infty}^\infty
\hat f(\xi)\,e^{2 \pi i \xi x}
\,d\xi

KaTeX vs MathJax

https://jsperf.com/katex-vs-mathjax